واحد پردازش مرکزی

سی‌پی‌یو {به انگلیسی|Central Processing Unit یا CPU} یا پردازنده {به انگلیسی|Processor}، یکی از اجزاء رایانه می‌باشد که فرامین و اطلاعات را مورد پردازش قرار می‌دهد. واحدهای پردازش مرکزی ویژگی پایه‌ای قابل برنامه‌ریزی‌شدن را در رایانه‌های رقمی فراهم می‌کنند، و یکی از مهم‌ترین اجزاء رایانه‌ها هستند. یک پردازندهٔ مرکزی، مداری یکپارچه می‌باشد که معمولاً به عنوان ریزپردازنده شناخته می‌شود. امروزه عبارت CPU معمولاً برای ریزپردازنده‌ها به کار می‌رود. عبارت «Central Processor Unit» (واحد پردازندهٔ مرکزی) یک ردهٔ خاص از ماشین را معرفی می‌کند که می‌تواند برنامه‌های رایانه را اجرا کند. این عبارت گسترده را می‌توان به راحتی به بسیاری از رایانه‌هایی که بسیار قبل‌تر از عبارت “CPU” بوجود آمده بودند نیز تعمیم داد. به هر حال این عبارت و شروع استفاده از آن در صنعت رایانه، از اوایل سال ۱۹۶۰ رایج شد. شکل، طراحی و پیاده‌سازی پرازنده‌ها نسبت به طراحی اولیه آنها تغییر کرده‌است ولی عملگرهای بنیادی آنها همچنان به همان شکل باقی مانده‌است. پردازنده‌های اولیه به عنوان یک بخش از سامانه‌ای بزرگ‌تر که معمولاً یک نوع رایانه‌است، دارای طراحی سفارشی بودند. این روش گران قیمت طراحی سفارشی پردازنده‌ها برای یک بخش خاص، به شکل قابل توجهی، مسیر تولید انبوه آنرا که برای اهداف زیادی قابل استفاده بود فراهم نمود. این استانداردسازی روند قابل ملاحظه‌ای را در عصر مجزای ابر رایانه‌های ترانزیستوری و ریز کامپیوترها آغاز نمود و راه عمومی نمودن مدارات مجتمع(IC یا Integrated Circuit) را سرعت فراوانی بخشید. یک مدار مجتمع، امکان افزایش پیچیدگی‌ها برای طراحی پردازنده‌ها و ساختن آنها در مقیاس کوچک را (در حد میلیمتر) امکان پذیر می‌سازد. هر دو فرآیند (کوچک سازی و استاندارد سازی پردازنده‌ها)، حضور این تجهیزات رقمی را در زندگی مدرن گسترش داد و آن را به فراتر از یک دستگاه خاص مانند رایانه تبدیل کرد. ریزپردازنده‌های جدید را در هر چیزی از خودروها گرفته تا تلفن‌های همراه و حتی اسباب بازی‌های کودکان میتوان یافت.

مدت زمان انجام یک کار به‌وسیله رایانه، به عوامل متعددی بستگی دارد که اولین آنها، سرعت پردازشگر رایانه‌است. پردازشگر یک تراشه الکترونیکی کوچک در قلب کامپیوتر است و سرعت آن بر حسب مگاهرتز یا گیگاهرتز سنجیده می‌شود. هر چه مقدار این پارامتر بیشتر باشد، پردازشگر سریعتر خواهد بود و در نتیجه قادر خواهد بود، محاسبات بیشتری را در هر ثانیه انجام دهد. سرعت پردازشگر به عنوان یکی از مشخصه‌های یک کامپیوتر به قدری در تعیین کارآیی آن اهمیت دارد که معمولاً به عنوان یکی از اجزای تشکیل دهنده نام کامپیوتر از آن یاد می‌شود. تراشه پردازشگر و اجزای الکترونیکی که آن را پشتیبانی می‌کنند، مجموعا به عنوان واحد پردازش مرکزی یا CPU شناخته می‌شوند.

واحد پردازش مرکزی واحد محاسباتی (ALU) و کنترلی (CU) رایانه‌است که دستورالعمل‌ها را تفسیر و اجرا می‌کند. رایانه‌های بزرگ و ریزرایانه‌های قدیمی بردهایی پر از مدارهای مجتمع داشته‌اند که عمل پردازش را انجام میداده‌اند. تراشه‌هایی که ریز پردازنده نامیده می‌شوند، امکان ساخت رایانه‌های شخصی و ایستگاه‌های کاری (Work Station) را میسر ساخته‌اند.

در اصطلاح عامیانه CPU به عنوان مغز رایانه شناخته می‌شود.

== تاریخچه ==

پیش از ظهور اولین ماشین که به پردازنده‌های امروزی شباهت داشت؛ کامپوترهای مثل انیاک(‍‍‍‍‌‍ENIAC) مجبور بودند برای اینکه کارهای مختلفی را انجام دهند دوباره سیم کشی کنند.

= ترانزیستورهای گسسته و مدارات مجتمع (واحد پردازش مرکزی) =

پیچیدگی طراحی پردانده‌ها هم‌زمان با افزایش سریع فن آوری‌های متنوع که ساختارهای کوچک‌تر و قابل اطمینان تری را در وسایل الکترونیک باعث می‌شد، افزایش یافت. اولین موفقیت با ظهور اولین ترانزیستورها حاصل شد. پردازنده‌های ‍‍ترانزیستوری در طول دهه‌های ۵۰ و ۶۰ میلادی زمان زیادی نبود که اختراع شده بود و این در حالی بود که آنها بسیار حجیم، غیر قابل اعتماد و دارای المانهای سوئیچینگ شکننده مانند لامپ‌های خلا و رله‌های الکتریکی بودند. با چنین پیشرفتی پردازنده‌هایی با پیچیدگی و قابلیت اعتماد بیشتری بر روی یک یا چندین برد مدار چاپی که شامل قسمت‌های تفکیک شده بودند ساخته شدند.

== ریزپردازنده‌ها ==

پیدایش ریز پردازنده‌ها در سال ۱۹۷۰ به طور قابل توجهی در طراحی و پیاده سازی پردازنده‌ها تأثیر گذار بود. از زمان ابداع اولین ریزپردازنده (اینتل۴۰۰۴)در سال ۱۹۷۰ و اولین بهره برداری گسترده از ریزپردازنده اینتل ۸۰۸۰ در سال ۱۹۷۴، این روند رو به رشد ریزپردازنده‌ها از دیگر روشهای پیاده سازی واحدهای پردازش مرکزی (CPU) پیشی گرفت، کارخانجات تولید ابر کامپیوترها و کامپیوترهای شخصی در آن زمان اقدام به تولید مدارات مجتمع با برنامه ریزی پیشرفته نمودند تا بتوانند معماری قدیمی کامپیوترهای خود را ارتقا دهند و در نهایت ریز پردازنده‌ای سازگار با مجموعه دستورالعمل‌ها ی خود تولید کردند که با سخت‌افزار و نرم‌افزارهای قدیمی نیز سازگار بودند. با دستیابی به چنین موفقیت بزرگی امروزه در تمامی کامپیوترهای شخصی CPUها منحصرا از ریز پردازنده‌ها استفاده می‌کنند.

== عملکرد ریزپردازنده‌ها ==

کارکرد بنیادی بیشتر ریزپردازنده‌ها علیرغم شکل فیزیکی که دارند، اجرای ترتیبی برنامه‌های ذخیره شده را موجب می‌شود. بحث در این مقوله نتیجه پیروی از قانون رایج نیومن را به همراه خواهد داشت. برنامه توسط یک سری از اعداد که در بخشی از حافظه ذخیره شده‌اند نمایش داده می‌شود.چهار مرحله که تقریباً تمامی ریزپردازنده‌هایی که از [ قانون فون نیومن] در ساختارشان استفاده می‌کنند از آن پیروی می‌کنند عبارت‌اند از : فراخوانی، رمزگشایی، اجرا، بازگشت برای نوشتن مجدد.

=== دامنه صحیح ===

روشی که یک پردازنده از طریق آن اعداد را نمایش می‌دهد یک روش انتخابی در طراحی است که البته در بسیاری از راه‌های اصولی اثر گذار است. در برخی از کامپیوترهای دیجیتالی اخیر از یک مدل الکترونیکی بر پایه سیستم شمارش دسیمال (مبنای ده) برای نمایش اعداد استفاده شده‌است. برخی دیگر از کامپیوترها از یک سیستم نامتعارف شمارشی مانند سیستم سه تایی(مبنای سه) استفاده می‌کنند. در حال حاضر تمامی پردازنده‌های پیشرفته اعداد را به صورت دودویی (مبنای دو) نمایش می‌دهند که در آن هر عدد به وسیله چندین کمیت فیزیکی دو ارزشی مانند ولتاژ بالا و پایین نمایش داده می‌شوند.

علت نمایش دهی از طریق اعداد ”حجم کم و دقت بالا ” در اعدادی است که پردازشگر می‌تواند نمایش دهد. در حالت دودویی پردازنده‌ها، یک بیت به یک مکان مشخص در پردازنده اطلاق می‌شود که پردازنده با آن به صورت مستقیم در ارتباط است. ارزش بیت (مکانهای شمارشی) یک پردازنده که برای نمایش اعداد بکار برده می‌شود «بزرگی کلمه»، «پهنای بیت»، «پهنای گذرگاه اطلاعات» و یا «رقم صحیح» نامیده می‌شود.که البته این اعداد گاهی در بین بخش‌های مختلف پردازنده‌های کاملاً یکسان نیز متفاوت است. برای مثال یک پردازنده ۸ بیتی به محدوده‌ای از اعداد دسترسی دارد که می‌تواند با هشت رقم دودویی (هر رقم دو مقدار می‌تواند داشته باشد) ۲ یا ۲۵۶ عدد گسسته نمایش داده شود. نتیجاتا مقدار صحیح اعداد باعث می‌شود که سخت‌افزار در محدوده‌ای از اعداد صحیح که قابل اجرا برای نرم‌افزار باشد محدود شود و بدین وسیله توسط پردازنده مورد بهره برداری قرار گیرد.

== پالس ساعت ==

اکثر پردازنده‌ها و در حقیقت اکثر دستگاه‌هایی که با منطق پالسی و تناوبی کار می‌کنند به صورت طبیعی باید سنکرون یا هم‌زمان باشند. این بدان معناست که آنها به منظور هم‌زمان سازی سیگنالها طراحی و ساخته شده‌اند. این سیگنالها به عنوان سیگنال ساعت(پالس ساعت) شناخته می‌شوند و معمولاً به صورت یک ” موج مربعی پریودیک” (متناوب) می‌باشند. برای محاسبه بیشترین زمانی که سیگنال قادر به حرکت از قسمت‌های مختلف مداری پردازنده‌است، طراحان یک دوره تناوب مناسب برای پالس ساعت انتخاب می‌کنند. این دوره تناوب باید از مقدار زمانی که برای حرکت سیگنال یا انتشار سیگنال در بدترین شرایط ممکن صرف می‌شود بیشتر باشد. برای تنظیم دوره تناوب باید پردازنده‌ها باید مطابق حساسیت به لبه‌های پایین رونده یا بالا رونده حرکت سیگنال در بدترین شرایط تاخیر طراحی و ساخته شوند. در واقع این حالت هم از چشم انداز طراحی و هم از نظر میزان اجزای تشکیل دهنده یک مزیت ویژه در ساده سازی پردازنده‌ها محسوب می‌شود. اگرچه معایبی نیز دارد، از جمله اینکه پردازنده باید منتظر المانهای کندتر بماند، حتی اگر قسمت‌هایی از آن سریع عمل کنند. این محدودیت به مقدار زیادی توسط روشهای گوناگون افزایش قدرت موازی سازی (انجام کارها به صورت هم‌زمان) پردازنده‌ها قابل جبران است.

== منبع ==

Wikipedia contributors, «Central processing unit,» Wikipedia, The Free Encyclopedia, http://en.wikipedia.org/w/index.php?title=Central_processing_unit&oldid=188161470 (accessed February ۱, ۲۰۰۸).

Add a Comment

نشانی ایمیل شما منتشر نخواهد شد.