مکانشناسی
> با توپوگرافی اشتباه گرفته نشود.
> برای دیگر کاربردها توپولوژی (ابهامزدایی) را ببینید.
مکانشناسی یا توپولوژی شاخهای از ریاضیات است که به بررسی فضاهای توپولوژیکی میپردازد. توپولوژی یکی از شاخههای نسبتاً جوان ریاضیات است.
== نامگذاری ==
نام این رشته از واژههای یونانی توپو (τόπος) بهمعنی مکان و (Logos) بهمعنای شناخت گرفته شدهاست. بنابراین، توپولوژی یعنی مکانشناسی.
فرهنگستان زبان و ادب فارسی برای توپولوژی واژهای معادل پیشنهاد نکردهاست و همان توپولوژی را در نظر گرفتهاست.
== تاریخچه ==
این مبحث نخستینبار توسط آنری پوانکاره (۱۹۱۲-۱۸۵۴) و در مقالهای با نام «آنالیز مکان» بهصورت مجموعهای از روشها و مسایل، دستهبندی شد. این مبحث در ادامه پیشرفتهایی بنیادین داشت و در شکل دادن به ریاضیات قرن بیستم و امروز، نقشی اساسی بازی کرد.
در صحبت از توپولوژی معمولاً اشیایی مانند نوار موبیوس، بطری کلاین، گرهها و حلقهها نخستین چیزهایی هستند که به ذهن میآیند. اما برخی با عبارتی طنزآمیز توپولوژیستها را تعریف میکنند؛ آنها میگویند توپولوژیست کسی است که فرقی میان فنجان قهوه و پیراشکی نمیبیند!
در دهه ۱۶۷۰ میلادی، گتفرید ویلهلم لایبنیتس (۱۷۱۶-۱۶۴۶)، در نامهای به کریستین هویگنس (۱۶۲۹-۱۶۹۵)، به تشریح مفهومی پرداخت که بعدها به مهمترین هدف در مطالعهٔ توپولوژی تبدیل شد:
در سدهٔ نوزدهم، کارل فردریک گاوس (۱۷۷۷-۱۸۵۵)، هنگامی که گرهها و حلقهها را بهعنوان تعمیمی از مدارهای سیارات مطالعه میکرد، به هندسهٔ مکان علاقهمند شد. او با نامگذاری اشکال گرهها و حلقهها، یک دستگاه مقدماتی بهوجود آورد که با روش ترکیبیاتی، گرههای معینی را از یکدیگر مجزا میساخت. برنهارد ریمان (۱۸۲۶-۱۸۶۶) نیز از روشهای دانش نوپای آنالیز مکان، بهعنوان ابزاری بنیادین برای مطالعهٔ توابع مختلط بهره گرفت.
در طی سدهٔ نوزدهم، آنالیز بهعنوان دانشی ژرف و ظریف پیشرفت پیدا کرد. با آغاز از کارهای ژرژ کانتور (۱۸۴۵-۱۹۱۸)، ایدههایی از جمله پیوستگی توابع و همگرایی دنبالهها، بهگونهای فزاینده و در موقعیتهای کلی بررسی میشدند تا این که در سدهٔ بیستم، و در سال ۱۹۱۴، فلیکس هاوسدورف (۱۸۶۹-۱۹۴۲) ایدهٔ کلی فضای توپولوژیکی را مطرح کرد.
مفهوم بنیادین در توپولوژی، اندیشهٔ پیوستگی است و این مفهوم برای نگاشتهای میان دو مجموعه که مجهز به مفهومی از «نزدیک بودن» باشند تعریف میشود (یعنی همان فضاهای توپولوژیکی) که البته این نزدیک بودن، تحت نگاشتهای پیوسته حفظ میشود. توپولوژی نوعی هندسهاست که در آن خواص مهم یک شکل، آنهایی درنظر گرفته میشوند که تحت حرکتهای پیوسته (همئومورفیسمها) حفظ گردند. در این دیدگاه، توپولوژی بهصورت هندسهٔ صفحاتی لاستیکگونه تعریف میشود.
== مفاهیم ==
توپولوژی یک از زمینههای مهم ریاضیات است که از پیشرفت مفاهیمی از هندسی و تئوری مجموعهها مانند فضا، بعد، اشکال، تبدیلات و… بوجود آمدهاست. از جنبه تاریخی توپولوژی در سال ۱۸۴۷ به توسط لیستنگ، یکی از شاگردان گاوس، معرفی شد. نام دیگری که در اغاز بسط توپولوژی به این موضوع اطلاق میشد، آنالیز وضع بود. لغت توپولوژی هم به معنای زمینهای در ریاضیات است و هم برای خانوادهای از مجموعهها که دارای خصوصیات مخصوصی که برای تعریف فضای توپولوژیک، که شی بنیادین توپولوژی است، استفاده میشود.
توپولوژی دارای زیرشاخههای زیادی است. بنیادیترین و قدیمیترین زیرشاخه، توپولوژی نقطه-مجموعهاست که بنیادهای توپولوژی بر آن بنا شدهاست و به مطالعه در زمینههای فشردگی، پیوستگی و اتصال میپردازد. از دیگر زیرشاخهها توپولوژی جبری است که سعی در محاسبه درجه اتصال دارد. همچنین زیرشاخههایی مانند توپولوژی هندسی، توپولوژی گراف و توپولوژی ابعاد کم نیز وجود دارد.
توپولوژی مطالعه ریاضیاتی روی خصوصیاتی است که در طی تغییر شکلها، ضربه خوردنها و کشیده شدن اشیاء، به طور ثابت حفظ میشوند (البته عمل پاره کردن مجاز نمیباشد). یک دایره به لحاظ توپولوژیکی هم ارز بیضی میباشد که میتواند در داخل آن با کشیده شدن تغییر شکل یابد و یک کره به سطح بیضی وار هم ارز است(یعنی یک منحنی بسته تک بعدی و بدون هیچ محل تقاطع که میتواند در فضای دو بعدی جای گیرد)، مجموعه تمام وضعیتهای ممکن برای عقربههای ساعت شمار و دقیقه شمار با هم، به لحاظ توپولوژیکی با چنبره هم ارز است (یعنی یک سطح دوبعدی که میتواند در داخل فضای سه بعدی جای گیرد) و مجموعه تمام وضعیتهای ممکن برای عقربههای ساعت شمار، دقیقه شمار و ثانیه شمار با هم، به لحاظ توپولوژی با یک شیء سه بعدی هم ارز میباشد.
توپولوژی با منحنیها، سطوح و سایر اشیاء در صفحه و فضای سه بعدی مطرح گردید. یکی از ایدههای اصلی در توپولوژی این است که اشیاء فضایی مثل دایرهها و کرهها در نوع خود میتوانند به عنوان اشیاء محسوب شوند و علم اشیاء ارتباطی با چگونگی نمایش یافتن یا جای گرفتن آنها در فضا ندارد.
توپولوژی با مطالعه مواردی چون اشیاء فضایی از قبیل منحنیها، سطوح، فضایی که ما آن را جهان مینامیم، پیوستار فضا زمان با نسبیت عمومی، فراکتالها، گرهها، چند شکلیها (اشیایی هستند که برخی خصوصیات فضایی اصلی آنها مشابه با جهان ما میباشد)، فضاهای مرحلهای که در فیزیک با آنها مواجه میشویم (مثل فضای وضعیتهای قرار گرفتن عقربهها در ساعت)، گروههای متقارن همچون مجموعه شیوههای چرخاندن یک رأس و غیره در ارتباط است.
توپولوژی برای جدا سازی اتصال ذاتی اشیاء و در عین حال کنار گذاشتن ساختار جزء به جزء آنها قابل استفاده میباشد. اشیاء توپولوژیکی اغلب به صورت رسمی به عنوان فضاهای توپولوژیکی تعریف میشوند. اگر دو شیء دارای خصوصیات توپولوژیکی مشابه باشند، گفته میشود که آنها هم ریخت هستند. البته اگر دقیق تر بگوییم، خصوصیاتی که با کشیدن یا کج کردن یک شیء تخریب نمیشوند، در واقع خصوصیاتی هستند که به واسطه همسانگری حفظ میشوند نه به واسطهٔ هم ریختی؛ همسانگری با کج کردن اشیاء دیگر در ارتباط است در حالیکه همریختی، خصیصه ذاتی است.
حدود سال ۱۹۰۰، پوانکاره معیاری از توپولوژی را تحت عنوان هوموتوپی (Homotopy) طراحی کرد. به طور خاص دو شیء ریاضیاتی زمانی هوموتوپیک خوانده میشوند که یکی از آنها بتواند به طور پیوسته به شکلی مشابه شکل دیگری تغییر یابد.
== چند قضیه از توپولوژی ==
* هر بازه بسته با طول متناهی در Rn فشرده است. و معکوس
* تصویر پیوسته یک فضای فشرده، فشردهاست.
* قضیه تیخونوف: حاصلضرب فضاهای فشرده، یک فضای فشردهاست.
* زیر مجموعه فشرده یک فضای هاسدورف، بسته است.
* هر فضای متری هاسدورف است.
== یادداشتها ==
{پانویس}
== منابع ==
Elementary Topology: A First Course Viro, Ivanov, Netsvetaev, Kharlamov
An invitation to Topology Planar Machines’ web site
== جستارهای وابسته ==
* مقایسهٔ توپولوژیهای تعریف شده روی یک مجموعه
* پایه برای توپولوژی
* زیرپایه برای توپولوژی
* توپولوژی ترتیبی
* توپولوژی زیرفضایی
* توپولوژی حاصلضربی
* توپولوژی خارجقسمتی
* همبندی
* فشردگی
* فضای باناخ
* فضای سرپینسکی
* فضای هاوسدورف
* فضای هیلبرت
* نگاشتهای پیوسته
* توپولوژی جبری
* پیوستگی توپولوژیک