ریاضیات

ریاضیات (در قدیم، هم‌چنین: اِنگارِش) را بیش‌تر دانش بررسی کمیتها و ساختارها و فضا و دگرگونی (تغییر) تعریف می‌کنند. دیدگاه دیگری ریاضی را دانشی می‌داند که در آن با استدلال منطقی از اصول و تعریف‌ها به نتایج دقیق و جدیدی می‌رسیم (دیدگاه‌های دیگری نیز در فلسفه ریاضیات بیان شده‌است).

ریاضیات خود یکی از علوم طبیعی به شمار نمی‌رود، ولی ساختارهای ویژه‌ای که ریاضیدانان می‌پژوهند بیشتر از دانشهای طبیعی به‌ویژه فیزیک سرچشمه می‌گیرند و در فضایی جدا از طبیعت و محض گونه گسترش پیدا می‌کند به طوری که علوم طبیعی برای حل مسائل خود به ریاضی باز می‌گردند تا جوابشان را با آن مقایسه و بررسی کنند.

علوم طبیعی، مهندسی، اقتصاد و پزشکی بسیار به ریاضیات تکیه دارد ولی گاه ریاضیدانان به دلایل صرفاً ریاضی (و نه کاربردی) به تعریف و بررسی برخی ساختارها می‌پردازند.

== موضوع‌های اصلی ریاضیات ==

> فهرستی الفبائی از عنوان‌های ریاضی موجود است. در زیر بعضی از اصلی‌ترین شاخه‌ها و موضوعات ریاضی به صورت دسته‌بندی شده ارائه شده است:

== تاریخچه ==

مصریان باستان، بیش از ۵ هزار سال پیش، برای اندازه گیری و نقشه برداری زمین و ساختن اهرام با دقت بسیار بالا، از حساب و هندسه استفاده می‌کردند. علم حساب با اعداد و محاسبه سر و کار دارد. در حساب، چهار عمل اصلی عبارتند از: جمع، تفریق، ضرب و تقسیم. هندسه علم مطالعه خط ها، زاویه ها، شکل ها، و حجم‌ها است. یونانی‌هایی چون اقلیدس، حدود ۲۵۰۰ سال قبل، بیشتر قوانین اصلی هندسه (قضایای هندسه) را تعیین کردند. جبر نوعی خلاصه نویسی ریاضیات است که در آن برای نشان دادن کمّیت‌های نامعلوم، از علائمی چون x و y استفاده می شود. این علم را نیز دانشمندان ایرانی، حدود ۱۲۰۰ سال قبل توسعه دادند. حساب، هندسه و جبر، پایه‌های ریاضیات هستند.

ریاضیات نوعی زبان علمی است. مهندسان، فیزیکدانان، و سایر دانشمندان، همگی از ریاضیات در کارهایشان استفاده می کنند. سایر کارشناسان که به مطالعه اعداد، کمّیت ها، شکل‌ها و فضا به شکل محض علاقه دارند، ریاضیات محض (غیرکاربردی) را به کار می گیرند. نظریه اعداد که شامل مطالعه کل اعداد و نحوه عمل آنهاست، نمونه ای از شاخه‌های ریاضیات محض به شمار می آید. در دنیای جدید، ریاضیات یکی از عناصر کلیدی علوم الکترونیک و رایانه به شمار می‌آید.

=== کمیت ===

=== ساختار ===

>

=== فضا ===

>

=== تغییر ===

>

=== پایه‌ها و روش‌های ریاضیات ===

=== ریاضیات گسسته ===

>

=== ریاضیات کاربردی ===

== گفتاورد (نقل قول) ==

برتراند راسل زمانیکه دربارهٔ روش بُنداشتی (اصل موضوعی) سخن می‌گفت که در آن برخی ویژگی‌های یک ساختار (که چیزی از آن نمی‌دانیم) فرض می‌شود و پیامدهای این فرض از راه منطق نتیجه‌گیری می‌شود گفت:

== کتاب‌شناسی ==

* Courant, R. and H. Robbins, What Is Mathematics? (1941);
* Davis, Philip J. and Hersh, Reuben, The Mathematical Experience. Birkher, Boston, Mass., 1980. معرفی آسان و سهل‌خوانی برای ورود به جهان ریاضیات
* Gullberg, Jan, Mathematics–From the Birth of Numbers. W.W. Norton, 1996. معرفی دانشنامه‌ای ریاضیات ارائه شده با زبانی واضح و ساده
* Hazewinkel, Michiel (ed.), Encyclopaedia of Mathematics. Kluwer Academic Publishers 2000. نسحهٔ ترجمه‌شده و گسترش‌یافتهٔ دانشنامهٔ ریاضیات شوروی سابق
* Kline, M., Mathematical Thought from Ancient to Modern Times (1973);

== پیوند به بیرون ==

* مرکز ریاضیات ایران
* لبخند ریاضی
* فرهنگ جامع ریاضیات
* اطلس ریاضیات
* اریک ویستن، دنیای ریاضیات، http://www.mathworld.com دانشنامهٔ برخط ریاضیات.
* سیارهٔ ریاضی (به انگلیسی:Planet Math) دانشنامهٔ بر خط ریاضیات که هنوز در دست ساخت است. به دلیل استفاده از اجازهٔ GFDL امکان تبادل مقالات با ویکی‌پدیا وجود دارد. این دانشنامه از روش نشان‌گذاری TeX استفاده می‌کند.
* MathForge یک وب‌نوشت خبری با موضوعات علمی مختلف در حوزهٔ ریاضیات عمومی، فیزیک عمومی و علوم رایانه و آموزش
* Metamath یک وب‌گاه و یک زبان که به شرح و بسط ریاضیات از پایه می‌پردازد

== منابع ==

* دائرهالمعارف ریاضیات دانشگاهی تألیف غلامرضا صفاکیش همدانی، نشر ریاضی، ۱۳۸۱، تهران.
* ریاضیات مهندسی نوشته حسین سرمدی، نشر سنجش، ۱۳۸۶، تهران.

== پانویس ==

Add a Comment

نشانی ایمیل شما منتشر نخواهد شد.